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Abstract. The theory of sequential quantum processes has been extended to Liouville 
space via the use of non-Hermitian projection operators in order to treat the evolution 
of the quantum density operator and to enable physically important matrix elements of 
the density operator to be calculated. The formal relationship of master equation methods 
to the theory of sequential quantum processes is established, and a new set of coupled 
master equations is derived. Special choices of projection operators lead to further 
simplification of the results. The Markoff approximation is also examined. 

1. Introduction 

Determination of the time development of the quantum density operator p ( f )  is 
fundamental to many applications in non-equilibrium statistical physics in which the 
system is not in a pure quantum state. 

In most cases not all density operator matrix elements are of equal interest, often 
it is only necessary to calculate certain elements or sums of elements. For example, 
if the quantum system consists of a small system S interacting with a large system R 
(or reservoir), it is well known (see Cohen-Tannoudji 1977, Agarwal 1974, Haake 
1973) that it is usually only important to determine the so-called reduced density 
operator cTS(t) = TrRp(t) or in terms of matrix elements 

A 

where i,j refer to states of the small system S and A refers to the states of the reservoir 
R. A second example is where it is of interest to consider the diagonal density matrix 
elements in order to set up generalised rate equations for the populations of the states 
li) of a quantum system (Agarwal 1973, Zwanzig 1961, 1964). A third example is 
treated in the following paper, where a system consisting of discrete states li) and 
continuum states la) is considered. The continuum states may in certain circumstances 
constitute a so-called internal reservoir (contrasting the first example where the 
separate quantum system R is an external reservoir) in that discrete to continuum 
transitions may be essentially irreversible. Three different types of density matrix 
element pii, psi(= p z )  and pas can be distinguished, of which the elements pij (giving 
the populations and coherences of the discrete states) and paa (giving the populations 
of the continuum states) are usually of most interest. This third example applies to 
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2158 B J Dalton 

problems such as atomic autoionisation and resonant multiphoton ionisation (ignoring 
spontaneous emission processes). A fourth example is an extension of the third, in 
which it is desirable to divide the discrete states into resonant and virtual states 
according to whether transitions from the initial state are approximately energy 
conserving or not. Six different types of density matrix element would then be involved. 
This case applies to multiphoton processes involving both resonant and non-resonant 
steps. Examples involving combinations of the above situations also occur. For 
example, a combination of the first and third cases applies in the theory of resonant 
multiphoton ionisation allowing for spontaneous emission processes (Dalton 1982), 
in which the states of the unoccupied radiation field modes act as an external reservoir 
and products of atomic continuum states with n-photon states of the exciting laser 
mode act as the internal reservoir. The photoelectron spectrum involves diagonal 
density matrix elements for the latter product states. The spontaneous emission 
spectrum can be obtained from the equations (master equations) governing density 
matrix elements between states which are products of atomic discrete states and 
n -photon states of the exciting laser mode. 

It is clearly desirable to develop methods for calculating separately the part or 
parts of p ( t )  of most relevance to the problem being studied without having to obtain 
a complete expression for p( t ) .  

One such approach is that of master equations (see, for example, Zwanzig 1961, 
Agarwal 1973, Haake 1973), in which the relevant part of p ( t )  satisfies, in general, 
integro-differential equations, although so far this approach seems to have been applied 
only to the case where the density matrix elements are divided up into a single set of 
relevant elements (for example, diagonal elements) and the remaining non-relevant 
elements (for example, off -diagonal elements). Another approach which is developed 
in this paper, is to extend the theory of sequential quantum processes to apply to the 
evolution of p ( t ) .  This theory was designed by Mower (1968) and extended by Cresser 
and Dalton (1980), to treat processes describable in the ordinary state space of the 
Schrodinger state vector Iq?(t)), 

The theory of sequential quantum processes and the master equation approach 
(as extended here) are in fact equivalent to each other, being related via Laplace 
transformations. This result will be shown in 0 3 where sets of coupled master equations 
for the various parts of p are derived from the sequential quantum processes results. 
An example of the coupled master equations occurs in the case of the system with 
an internal reservoir (example three above) where the special result, equation (42), 
applies. The coupled master equations (i) relate bij to various pkl (at earlier times) 
(ii) relate bpi (and pia)  to various pkl (at earlier times) and (iii) relate bps to various pvi 
(and piv) (at earlier times). Applied to the specific problem of resonant multiphoton 
ionisation, the equations for baa could be used to develop expressions for the photoelec- 
tron spectrum, those for bij could be used to develop expressions for the time-dependent 
ionisation probability (see Dalton 1982). 

Having demonstrated the important result that the theory of sequential quantum 
processes and the coupled master equations are formally equivalent, the question then 
arises as to their relative utility. This depends on the particular application, but often 
situations leading to a simplification of the one also lead to a simplification of the 
other. For example, master equations become simpler when the Markoff approxima- 
tion can be made, which occurs when the relevant matrix elements of certain relaxation 
operators (see equation (22) below) behave essentially like Dirac delta functions. 
However, in this case the corresponding matrix elements of certain line shift operators 
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(see equation (18) below) are essentially independent of the Laplace variable I, in 
which case the pole approximation can be made, leading to a simplification of sequential 
quantum processes results. In the Markovian case, master equations are a convenient 
starting point to obtain steady-state solutions (by putting the time derivatives equal 
to zero) and in quantum optics applications lead to the important optical Bloch 
equations, thereby enabling analogies to be drawn with work on nuclear spin resonance. 
However, in the general non-Markovian case, the most practical method of solving 
the coupled master equations would be via Laplace transforms, which of course then 
yields the sequential quantum processes results. 

The treatment given here involves resolvent operator theory in Liouville space 
and makes use of non-Hermitian projection operators in general. The relevant parts 
of p ( t )  are given as Laplace transform expressions for the quantities Ailp(tj)) (see 
equation (1 1)) in terms of results for projections of the resolvent operator, Ai%(z)Ao 
(see equation (20)). The latter expression in turn involves line shift operators Bi(z)  
acting in Liouville space (see equations (18), (19)). The results, which are derived in 
§ 2, are formally identical to those for state space. A new set of related coupled master 
equations for the Ailp)) is then derived in § 3. The results obtained (see equations 
(28), (37)) are exact, but may in certain cases be treated via the standard Markoff 
approximation approach ( 0  5 ) .  Further simplifications to the results can be obtained 
(see Q 4) when the interaction contribution to the Liouville operator satisfies certain 
conditions. These simplifications are analogous to those discussed earlier for state 
space (Cresser and Dalton 1980), but the conditions on the interaction Liouville 
operator are not in general equivalent to those applying in Cresser and Dalton (1980). 

An illustrative application of the results for the case of a system with an internal 
reservoir is presented in the following paper (to be referred to as paper 11). 

2. Resolvent operator theory of sequential quantum processes 

In the notation of Liouville space (see appendix 1) the quantum density operator p ( t )  
is represented by a vector Ip(t))) satisfying the Liouville equation 

where 2' is the Liouville operator, related to the time-independent Hamiltonian H 
for the system via 

Y = H x 1 - 1 x H. (3) 

The Liouville equation can be solved, analogously to the time-dependent Schrodin- 
ger equation (the latter case is discussed by Goldberger and Watson (1964), Mower 
(1966, 1968), Cresser and Dalton (1980)), via Laplace transform methods in terms of 
a resolvent operator % ( I )  = ( z  -Y)-' acting in Liouville space (Zwanzig 1961, 1964, 
Haake 1973, Agarwal 1973,1974). Thus 

where c is the contour just above the real axis in the complex w plane that goes from 
+CO to -00, and where the quantum density operator at t = 0 is p(0) .  
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As discussed in the introduction, it is often only necessary to calculate certain 
density matrix elenients or sums of elements. A convenient method of setting up 
equations for the various parts of p is to make use of projection operators (projectors), 
a technique introduced by Zwanzig (1961). 

We consider then a set of projection operators acting in Liouville space 
Ao, A 1 ,  A2, . . ., Ai, . . ., which are such that 

A: = ni ( 5 a )  

A i A . = A . A . = O  1 1 1  i # j .  O b )  

Associated projectors Qo, Q1, Q2 , .  . ., Qi, . . . are introduced via (1 is the unit 
operator in Liouville space) 

Qo= 1 -A0 

i 

j = O  
Qi = 1 - 1 Ai. 

These associated projectors therefore satisfy 

The projector A. is chosen so as to leave the initial density operator lp(0))) 
unchanged, whilst the remaining projectors are chosen so as to yield zero when applied 
to IP(0))) 

AOlP(0))) = / d o ) ) )  ( 8 ~ )  

Ai I P  (0))) = 0 i s l .  (8b)  
Finally, in the applications of interest, the Hamiltonian H can be written as the 

sum, K + V, of an unperturbed Hamiltonian K and an interaction V which causes 
transitions to occur between the eigenstates of K. The Liouville operator 9 can then 
be written 

9=x+v (9a) 

X = K x l - l  x K  (96) 

v = v x 1 - 1 x v .  (9c) 

where 
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The projectors Ai are also chosen so as to satisfy 

A,X=XAi ( loa)  

QiX = XQi. ( lob)  
The physically important matrix elements of p ( t )  are determined from 

and hence also from equation (6) 

Ailp(t)))  (i = 0, 1,2 ,  . . .). Using equations (4) and (8a) we obtain 

Analogous to the theory of sequential quantum processes in the usual vector space 
of state vectors (I+!&)) (Mower 1966, 1968, Cresser and Dalton 1980) a determination 
of expressions of the form Ai%(ho)Ao would hopefully display all the important w 
variations, enabling the contour integral in equation (1 1) to be calculated. This theory 
of sequential quantum processes in Liouville space is outlined in this section. 

Before developing the general theory, examples of projectors should be given. 
For the first example of a small quantum system S interacting with a large reservoir 
R, it is convenient to introduce the projector (a similar projector was first used by 
Argyres and Kelley (1964), their projector is equivalent to Qo) A. defined by 

A0 = lVR(o)))((1R11S (12) 
where it is assumed that at t = 0 the density operator factorises as a product of the 
initial density operator aR(0) for the reservoir and an initial density operator ~ ' ( 0 )  
for the small system S .  Thus 

In equation (12) I1R)) is the vecior in R-Liouville space that represents the ordinary 
unit operator and Is is the unit operator in S-Liouville space. 

In terms of A. we have 

AOb (t))) = bR(O>))((l  RIP (t)))  

= IaR(0)))l&))). (14) 
Putting t = 0 shows that equation (8a) is satisfied. Hence the S-Liouville space vector 
representing the reduced density operator can be obtained via equation (15), which 
is equivalent to equation (1) 

bS(t))) = ((1RhoIP(f))) .  (15) 
For this system the unperturbed Hamiltonian K is of the form Hs + HR, where 

Hs is the Hamiltonian of the small system S and HR is the Hamiltonian of the reservoir. 
It is also assumed that the reservoir is in steady state at t = 0 and hence [HR, (TR(o)] = 0. 
From these assumptions we can show that Ai  = A. and A&X = XAo, as required by 
the general theory. This projector A. has been used extensively (see Agarwal 1974, 
Haake 1973, Cohen-Tannoudji 1975). The above properties are derived in Cohen- 
Tannoudji (1975). The projector AI can be chosen equal to QO and hence 01 = 0. 
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In this example the projector A. is non-Hermitian, but fortunately the develop- 
ment of the theory of sequential quantum processes in Liouville space and the 
derivation of the master equations does not depend on this, although they are 
Hermitian in some applications. In general then, the Ai cannot be written in the form 

c IACLt))((ACLtl 

where [ A ) ,  IF) are a suitable orthonormal basis set for the quantum system. 

off -diagonal elements, it is convenient to introduce 
For the second example discussed in the introduction, and where p ( 0 )  contains no 

In this case Aolp)) will only involve diagonal density matrix elements pii ,  whereas A I  Ip)) 
will only contain off-diagonal elements.. 

For the third example discussed in the introduction and where p ( 0 )  only involves 
matrix elements p i i ( 0 )  it is convenient to introduce (see paper I1 for details) 

A z = C  l d ) ) ( ( *@t l  Qz = 0. 
4 

In this case Aolp)), AIIp)) and A&)) will involve density matrix elements pij, pai (and 
pia),  pas respectively, so that the discrete-state coherences and populations will be 
obtained from Aolp)), whilst the continuum-state populations will be obtained from 
A21p)). The form of X compatible with equation (loa) is discussed in the accompanying 
paper. 

Analogous to the previous work (Mower 1968, Cresser and Dalton 1980) on 
sequential quantum processes, we can introduce line shift operators 9 '(2) and reduced 
resolvent operators Ai9'(z)Ai, which are now of course operators in Liouville space. 
They are defined by 

(18) ~ ' ( 2 )  = Y +  V Q ~ ( Z  - Q~Lz'Q~)-'Q~w 

and 

Ai9'(z)Ai = A i [ z  -X-Ai.9?!i(z)Ai]-'Ai. (19) 

The operators % ' ( z )  will be referred to as line shift operators rather than as level 
shift operators as in the case of ordinary state space, since they will determine shifts 
and widths of spectral transition frequencies rather than of energy levels. 

Methods similar to those in Mower (1966, 1968) and Cresser and Dalton (1980) 
can be used to obtain expressions for Ao9(z)Ao and A i 9 ( z ) A o  ( i  2 1). The treatment 
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is not quite the same as the previous work which is partially written as if the projectors 
were Hermitian, for example they are said to span certain vector subspaces. The 
final results obtained here only depend on the properties given in equations (5 ) ,  (7) 
and (10). The derivation is carried out for completeness in appendix 2.  

It is found that 

A ~ % ( z ) A ~  = A ~ % ' ( Z ) A ~  ( 2 0 a )  

where a path from 0 to i is specified by a sequence of numbers i, j ,  k, . . . , 0 such that 
i > j > k >. . .>O.  

As part of the derivation an important identity for the line shift operators is 
established 

B ' - ' ( z )  = 8 i ( ~ )  + B i ( ~ ) ~ i @ ( ~ ) ~ i 8  '(2) i s l .  (21 )  

The equations (20) are the basic results in the theory of sequential quantum 
processes. 

3. Derivation of master equations 

We now make use of the formal expressions for the Ai%(hw)A0 to obtain a set of 
coupled master equations for the Ailp)). 

In determining master equations we introduce relaxation operators R'(7) (7 3 0) 
in terms of Laplace transforms of the line shift operators 9 ' ( A w ) .  Thus for all 
i = 0 , 1 , 2 , .  . . 

The Laplace transform expressions used here follow those of Goldberger and Watson 
(1964),  rather than the usual expressions (Morse and Feshbach 1953). 

Thus (LT = Laplace transform) 

% ' (hw ) = i x [LT R ( T ) ] .  (22c )  

3.1. Master equation for A&) 

From equations ( 1 1 )  and ( 2 0 a )  we see that 
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Thus using the result for the Laplace transform of a derivative (Morse and Feshbach 
1953) and equation (23) we have 

(24) 

1 
= - ( - A ~  + h w ~ o % o ( h w ) ~ o ) l p ( ~ ) ) )  

= - [ - A ~ ( A ~  - A ~ X A ~  - A ~ ~ ~ ~ ~ ~ ) A ~ ) A ~ ~ ~ ~ ~ ~ ) A ~  

i 

1 
i 

+ ~ ~ ~ o ~ o ~ O ~ ~ ~ M o l l P  (0))) * 

In deriving the last equation we have also used a result obtained similarly to 
equations (A2.11), (A2.13): 

A0 = AO(Z - A ~ A o - A o . ~ ~ ( z ) A o ) A o % ~ ( z ) A o .  

Thus using equations (23), (22) 

This equation is equivalent to the well known Zwanzig-Nakajima equation (Zwan- 
zig 1961, Nakajima 1958). A similar equation is given by Cohen-Tannoudji (1975), 
(equation (9.17)) but in terms of quantities defined via Fourier transforms. 
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Hence we find that 

LT (Ailp))) = hAigi(hw)Ai C Ai%i(hw)AjAj~(hw)Aolp(0))) .  (31) 

Then using equations (30), (31) and (8b) and an equation analogous to (24) we have 

j<i  

In deriving equation (33) we have also used a result obtained similarly to equations 
(2.11), (2.13) 

= A,(Z - A ~ X A ~  - A ~ % ~ ( z ) A ~ ) A ~ ~ ~ ( z ) A ~ .  (34) 

Collecting terms and using equations (21), (22), (29) and (31), we have 

Thus, from the convolution theorem for Laplace transforms (Morse and Feshbach 
1953), we obtain the master equations for Ailp)) ( i  2 1) 

(37) 
d 

ih -AiIp(t))) = AiXAiAiJp(t)))+ 1 j ' d t  AiRi-'(p)AjAjlp(f - 7))). 
dt j c i  0 
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These equations together with equation (28) will form a coupled set of master equations 
in the form of integro-differential equations, and which are exact. In the case where 
the Markoff approximation can be applied they simplify to differential equations. In 
all cases the set of master equations is equivalent to the set of equations for the 
Ai%Ao ( i  = 0, 1, . , .) given in equation (20). Indeed the expressions for Ai%(hw)Ao 
would constitute the Laplace transform solutions of the master equations. 

4. Simplifications associated with conditions on Y 

4.1. Case A 

In this case the Ai are such that for j < i 
AjVAj = 0 j < i - l  

QiVAj = 0 j < i .  

In this situation considering the A,%'Ak that occur in equation (20) ( k < j )  and 
using equations (38a), (386) we have 

AjBiAk = hiVAk + AjVQj(z - QjL?Qi)-lQjVAk 

= AjVAj-1 k = j - 1  (39a) 

= O  k < j - 1 .  (396) 
Hence in equation (20) for &%Ao only one path {i, i - 1, i -2, . . ., 1,O) contributes 

and we get 

A~%(~)A~ = A~%~(z)A~A~vA~-~A~-~%~-~(z)A~-~ . . . A ~ % O ( Z ) A ~  i s l .  (40) 
This expression is analogous to the result given by Cresser and Dalton (1980) (see 
equation (1 5)). 

Considering the A i B i - l A j  j < i that occur, via their Laplace transforms in the master 
equations (37) and using equations (38a), (386) we find that 

A&@-'Ai = AiVAi +AiVQi - l ( z  - Qi-12Qi-1)-1Qi-1VAj 

= O  for j <  i - 1 (41a) 

= AS for j = i - I .  (416) 
Thus only A i R i - l ( ~ ) A i - l  is non-zero and the master equations (37) simplify to 

ial .  ih -AiJp(t))) d = A ~ A i A i ~ p ( t ) ) ~ + ~ r d ~ A i ~ i - l ( ~ ) A i - ~ A i - l ~ p ( t  -7))) 
dt 0 

(42) 
We see that i is coupled to i - 1, i - 1 to i - 2 and so on. 

4.2. CaseB 

In this case the Ai are such that 

AiVAj = 0 j < i - 1  or j > i + l  

QjVAi = 0 j < i  
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AiVQj = 0 j > i .  (43c) 

Thus the conditions for case A are satisfied so that the equations (40), (42) will also 
apply here for case B. 

In addition we have, using equation (21), 

A ~ W ~ A ,  = A , W ~ + ~ A ~  + A , w ~ + ~ A ~ + ~ A ~ + ~ ~ ~ + ~ A ~ + ~ A ~ + ~ w ~ + ~ ' ~ ~ .  

Then, using equations (43b), (43c) we find that 

AjWi+'Aj =AiVAi +hiVQi+l(Z -Qi+l2?Qi+l)-'Qi+lVAi =AiVAi. ( 4 4 ~ )  

Also, using equation (43c) we obtain 

Ai.%i+lAi+l = hi"lrAi+l +AiVQi+l(z - Q i + t ~ Q i + l ) - l Q i + l V A i + l  

= AiVAi+l. (44b) 

Ai+lWi+lAi  = Ai+lYA;. (44c 1 

A , . @ ( Z ) A ~  = A ~ Y A ~  + A , V A ~ + ~ A ~ + ~ @ + ~ ( Z ) A ~ + ~ A ~ + ~  mi. (45) 

This expression is very useful in calculating the AiWiAi that occur in the Ai@&. It 
also enables a continued fraction expression to be developed, analogous to a similar 
result given by Cresser and Dalton (1980, equation (16)) 

h i W i A i  = AiYAi +AiYAi+l(z -X-Ai+lW"'Aj+l)-'Ai+lYAi 

As in equation (39a) we have 

Thus we obtain the simplified result 

= AiVAi + AiVAi+l[Z -X- Ai+l"lrAi+l 

-Ai+lOCTAi+Z(Z -X-Aj+2Wii+2Aj+2)-1Ai~~YAi+l]- 'A,+lVAi (46) 

etc. 
It should be noted that the conditions given in equation (43) are not derivable 

from those in equation (38), since the Ai and Qi are not in general Hermitian. Also 
the conditions in equations (38), (43) involving the Qi are not derivable from those 
involving the Ai alone (equations (38a), ( 4 3 ~ ) ) .  This is in contrast to the situation 
dealt with earlier (Cresser and Dalton 1980), in which the choice of the A, as Hermitian 
projectors associated with successive manifolds of states leads to conditions (Cresser 
and Dalton 1980, equation (13)) analogous to those for case B. 

In Liouville space the condition for case A may apply without those for case B, 
although in specific applications of the theory made so far the conditions for case B 
are satisfied. 

5. Markoff approximation results 

If the interaction Liouville operator V is zero, the Ailp)) change with time via 
exp(-iXf/h)Ailp(0))) as can easily be shown from equations (28), (37). 

The Markoff approximation can apply in any specific equation (28), (37) when the 
various relaxation quantities A ~ R ~ ( ~ ) A , , ,  A ~ R  +'(7)ni are only significant over a time 
scale (the correlation time 7,) sufficiently short that the effects of the relaxation terms 
on the Aolp)), Ajlp)) can be ignored over the time interval (t, t - 7). 
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If the Markoff approximation applies in the case of equation (28) we can then: 

(ii) replace ji d r  by j: d r  e-" on the right hand side of the equation. E is a suitably 

Using equation (loa),  the master equation (28) becomes 

(9 replace Adp(t - 7))) by exp(iWh)Aoldf))) 

small quantity ( E  2 0). 

This is now a differential equation rather than an integro-differential equation. 

equation, we obtain the Markovian master equation (48) 
Substituting for R0(7) from equation (22a), and doing the time integral in the last 

The Markovian relaxation operator is given by 

ro = - d o  A o ~ o ( h ~ ) A o A o ( h ~  -ihs -X)- 'Ao E > I m o .  (49) 2lr ' I  
The Markoff approximation will be valid if rrC<< 1, where r is a typical matrix 

element of ro. 
Analogous equations can be obtained from equations (37), when the Markoff 

approximation is valid. As will be seen in paper 11, it is possible for the Markoff 
approximation to apply for certain Ailp)) without necessarily applying for all i = 
0 , 1 , 2  ) . . . .  
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Appendix 1. Liouville space 

The notations and definitions for vectors and operators in Liouville space (L-space) 
used here follow those given by Cohen-Tannoudji (1973, along with some additional 
quantities used by Fiutak and van Kranendonk (1962). As this material is not widely 
available, we include it for reasons of completeness. 

Each linear operator A in state space corresponds to a vector /A)) in L-space such 
that 

(A l .  l a )  

(Al.  1 b) 

A + B ++ [A)) + IB)) 

CA - c IA)). 
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These definitions lead to the usual formal rules for sums of vectors in L-space, 

Particular operators in state space are associated with L-space vectors defined as 
for example ]A)) + IB)) = IB)) + IA)). 

follows: 

( A 1 . 2 ~ )  

(A1.26) 

1 - 1 0 .  ( A 1 . 2 ~ )  

Hence we have for orthonormal basis l i )  in state space 

(A1.36) 

so that the vectors lijt)) form a basis in L-space. As we shall see this basis is also 
orthonormal (see equation (A1 Se)).  

The scalar product of two L-space vectors is defined via 

((BIA)) = Tr(BtA)  ( A 1 . 4 ~ )  

= B;A, in any orthonormal basis. (A1.46) 
ii 

The scalar product thus has the following properties 

(i) ((AIA))aO ( A 1 . 5 ~ )  

(with equality only if IA)) = 10))) 

(A1.56) 

( A 1 . 5 ~ )  

(A1.5d) 

(A1.5e) 

if li) is an orthonormal basis in state space. 

if li) is an orthonormal basis in state space. 

A + B ( A )  for all A via some linear relationship. In this case we may write 
Linear operators in L-space (super operators) can be defined in the situation where 

IB)) =FIN)  (A1.6) 

where F is a linear operator in L-space which expresses the particular linear relation- 
ship. As an example of a super operator consider the linear relationship 

B = F~AF: .  ( A 1 . 7 ~ )  
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We thus define 

F = F~ x F: (A1.76) 

Im = FIA)) ( A 1 . 7 ~ )  

= I(F,AF: 1)). (A1.7d) 

The sum and product of two super operators are defined in the usual way 

(FGIIAJ) = RGIA))) ( A 1 . 8 ~ )  

( F  + G)IA )) = FIA  )) + G 1-4 )). (A1.8b) 

Super operators obey the usual rules of operator algebra, for example (FG)H = 
F ( G H )  = FGH. 

The Hermitian adjoint F t  is defined to be such that 

(@ I(FtlA))) = ((A I(FIB)))*. (A1.9) 

All the usual rules for Hermitian adjoints follow, for example (Ft)+ = E 
The eigenvalue equation for a super operator is of the usual form 

FIN) = A h ) ) .  (A1.lO) 

The usual results for eigenvalues and eigenvectors apply, for example if F is Hermitian 
then the eigenvalues are real. 

The super operator F = Fl x FZt has a number of important properties 

(i) (FI  x F :  )liit)J = I(F1li))(FZlj))t)) (Al.  1 l a )  

(ii) W t I ( F i  xF:)Icdt))= (aIFiIc)(bIFzId)* (Al.l l b )  

(iii) (F iXF: ) (Gi  X Gzt)= (FiG1)x(F2Gdt (Al.l l c )  

(Al.l I d )  

(Al.l l e )  

(Al.ll f )  

F x (G, +G$ = F X  G: +F x G: (Al .  1 l g )  

(vii) 1 x 1 = 1 (the unit super operator) (Al.l l h )  

= 0 (the null super operator). (Al.l l i )  

The Liouville super operator 2 is defined in terms of the Hamiltonian operator in 

0 x 1  

state space (H = H ~ )  

(A1.12) 

( A 1 . 1 3 ~ )  

(Al.  13 6 )  

so that 2 has the effect of taking the commutator of the operator with H.  
The eigenvalues of the Liouville super operator are the transition energies (energy 

differences) and thus are related directly to the spectral transition line frequencies. 
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Because of this connection Liouville space is often also called line space. For with 

Hli) = Eili) = hwili) (A1.14~) 

we have 

~ l i j + ) )  = hwijlijt)). 

The Liouville equation itself now becomes 

(A1.14b) 

(A1.15) 

where Ip)) is the vector in L-space representing the density operator. The formal 
similarity of this form of the Liouville equation to the time-dependent Schrodinger 
equation is obvious. 

An important property of B is that 

exp( iBt/ h) /A)) = lexp(iHr/ h)A exp( -Xr/ A))). (Al.  16) 

This enables us to write down the solution of the Liouville equation for the case where 
H is independent of t 

(A1 .17~)  

(Al .  17b) 

Since H is Hermitian it is trivial to show also that 2 is Hermitian. 
Another important type of super operator is the form IA))((BI which is defined via 

(Al .  18) 

From the equations (A1.36) and (A1.5f) for an orthonormal basis li) we can easily 

(I A )X(B I) I C)) = I A )X(B I C)> . 

obtain the completeness relationship 

1 = lij'))((ij+l. (Al.  19) 

State space is often the direct product of two subspaces R and S. If AR and As 
are typical operators in R, S respectively then the product ARAs = AsAR corresponds 
to the product of two vectors IAR)), /As)) in separate L-spaces. 

ARAs~*IAR))IAs))G IAs)>IAR)). (A1.20) 

If lijt)) is a basis in the S part of L-space, lapt)) in the R part of L-space R, then 

Similarly we may have super operators of the form FRFs (strictly F R  0 Fs) (or 

li 

Thus we can consider the direct product of two Liouville spaces. 

lij'; apt))" 1ij'))lap')) will be a basis in the overall L-space. 

sums of products etc) such that FRFSlA~))IAs)) = (FRIAR)))(Fs~As)>). 

Appendix 2. Derivation of resolvent operator theory results 

A2.1. Expressions for Ao@Ao and Qo%Ao 

(2  -B)@(r) = 1. (A2.1) 
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Substituting 1 = A. + Qo between z -2 and (B in (A2.1), multiplying from the right 

( Z  -2)AoAo(B(z)Ao+(z - 3 ' ) 0 o Q o ( B ( ~ ) A o = A o .  (A2.2) 

Multiplying (A2.2) from the left by A0 and using (5a) ,  (7c), (loa) for i = 0, we 

A ~ ( z  -~)A~A~(BB(Z)AO-AOYQOQO(B(Z)AO = Ao. (A2.3) 

Multiplying (A2.2) from the left by Qo, and using (7cL (7f) and ( loa)  for i = 0,  

-Q~YAoAo(B(z)Ao+ QO(Z -QO-YQo)QoQo(B(z)Ao= 0. (A2.4) 

( Z  - Q02Qo)-'(z - Qo2Qo) = 1. (A2.5) 

Multiplying (A2.5) from the left and right by Qo and using (7f) with i = 0, we obtain 

(A2.6) 

by A. and then using (5a) ,  (7f) for i = 0, we obtain 

obtain 

we obtain 

Now 

Qo(z - C ? ~ ~ Q O ) - ' Q O Q O ( Z  - Q&Qo)Qo = 00. 
Hence we obtain from (A2.4), using (7f) with i = 0 

Q~(BB(Z)A, = Q ~ ( Z  - Q ~ ~ Q ~ ~ - ' Q ~ Q ~ Y A ~ A ~ ( B ~ Z ~ A ~ .  
Substituting this result into (A2.3), using (5a),  (7f) with i = 0, we have 

(A2.7) 

AO[Z - X - AoYho-AoW?o(~ - Q&QO)-'QO"Y'A~]AOAO~B(Z)AO = 1. (A2.8) 

The line shift operator Bo(z)  is introduced via 

B0(z) = Y +  YQo(z - Q&Qo)-'QoY. (A2.9) 

Substituting for Bo(z )  in (2.8), we get 

Ao(z - X - A o ~ o ( ~ ) A ~ ) A o ( B ( ~ ) A ~  = 1.  (A2.10) 

Similarly to the derivation of (A2.6) we then find 

ilo(t - x - A ~ B ~ A ~ ) - ' A ~ A ~ ( z  - X - - A ~ B ~ A ~ ~ A ~  = il0. (A2.11) 

Hence from (A2.10) and using (5a) with i = 0, we obtain 

A ~ ( B ( z ) A ~  = A ~ ( B O ( Z ) A ~  (A2.12) 

where we have defined the reduced resolvent operator Ao(B0(t)Ao as in (A2.13) 

Ao(Bo(~)Ao = A& -X-AOB~(Z)AO)- 'AO.  (A2.13) 

Also from (A2.9), and using (7f) with i = 0, we have 

QoBo(t)A0=[1 + QoVQo(z - Q o ~ Q o ) - ' ] Q o ~ A o  

= [(z - Qo2Qo)(z  - Q 09Qo)- '  + QoYQo(z - Qo9Qo)-'lQoYAo 

= ( Z  - Q ~ X Q ~ ) ( Z  - Q ~ ~ Q ~ ) - ~ Q ~ ~ Q ~  

= QO(Z - Qo7tQo)QoQo(~ - Qo-YQo)-'QoQoW?O. (A2.14) 

If we use an expression analogous to (A2.6) with X replacing 9, we then get from 

(A2.15) 

(A2.14) 

Q ~ ( Z  - Q ~ ~ Q ~ ~ - ' Q ~ Q ~ Y Q ~  = Q ~ ( Z  - Q ~ x Q ~ ~ - ' Q ~ Q ~ ~ ~ ~ z ~ A ~ .  



Sequential quantum processes: I 2173 

Substituting (A2.15), (A2.12) into (A2.7) gives 

(A2.24) 

(A2.25) 
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We then introduce the line shift operator g i ( z )  via (A2.26) 

9 ' ( z )  = V +  VQi(z - Q 3 Q i ) - ' Q i ~ *  (A2.26) 

Hence 

A ~ ( z  - X - A i 9 i ( ~ ) A j ) A i A i ( ~  - Qi-12Qi-1)-'Qi-l 

(A2.27) 1 
= Ai + AjVQj ( Z  - Q i 2 Q i ) -  Qi. 

Similarly to (A2.11) we can derive the result 

- X - A ~ ~ ~ A ~ ) - ' A ~ & ( Z  - X - A i 9 ' A i )  = Ai. (A2.28) 

The reduced resolvent operator is introduced via 

Ai(ei(z)Ai = A ~ ( z  -X-Aj9i(Z)Ai)-1Ai* (A2.29) 

Using (A2.28), (A2.29) in (A2.27) we obtain 

Ai(z - Qj-12Qj-l)-'Qj-l= Aj%'Ai[Aj +AiVQi(Z - Q3Qi)- 'Qi ]*  
(A2.30) 

Substituting (A2.30) into (A2.23), using (7c) and ( loa)  and then multiplying from 
the left by Qi, we find that 

1 
Qi(z -Qi-l-YQi-l)- Qi-1 

= Qj(z -QZQi)-'Qi 
+ Q ~ ( z  - Qi9Qi)-'QiVAiAiiQiAj[Ai + AiVQi(z - Qi9Qi)- 'Qi] .  (A2.31) 

Adding (A2.31) and (A2.30), replacing Qi-l by Ai + Qi from (7a), and using ( 5 ~ 1 ,  
we obtain 

Qi-I(z - Qi-  1 2 Q i -  I )-' Qi- 1 

- - Qj(z --Q~~?QJ-'Q~ +[Ai + Q i ( t  - Qi2?Qi)-'QiVAi]Ai(eiAi 

x (At + AiVQi(z - Q$Qi)-'Qi)* 
(A2.3 2) 

Multiplying (A2.32) from the left and right by V, then adding V to each side, and 
using (5a),  we get 

V + VQi- 1 ( z - Qi - 1 2 Q i -  I)-' Qi - 1 "y. 

= V +  VQj(z -Q3Qi)-'QiV 

+ ( V +  V Q ~ ( Z - Q ~ Q ~ ) - ~ Q ~ V ) A ~ ~ ~ A ~ ( V + V Q ~ ( Z - O ~ Q ~ ) - ' Q ~ ~ ) .  

This result is the same as 

.@-l(z) = ~ i ( ~ ) + 9 i ( ~ ) ~ i ( e i ( ~ ) ~ ~ i ( ~ ) ,  

A2.3. Derivation of expression for Ai%Ao(i> 1) 

Using induction it is easy to see that (A2.33) yields the identity 
i 

j = l  
~ O ( Z )  = @(z) n (1 + A ~ @ ( z ) A ~ @ ( z ) )  

(A2.33) 

(A2.34) 

where the product is ordered with the j = 1 factor on the right. 
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Substituting (A2.34) into (A2.16) gives 

Qo%(z)Ao = QO(Z - QoXQO)-'QOQO.B~(Z) 

(A2.35) 

From (76) with j = 0 we can write 

Q o = A l + A Z + .  . . . + A ; + Q ; .  (A2.36) 
Multiplying (A2.35) from the left by Ai, using (7e) with j = 0, we obtain 

A ; % ( ~ ) A ~  = A;(Z - Q ~ x Q ~ ) - ~ Q ~ Q ~ . B ~  fi (1 + A ~ ~ ~ A ~ ~ ~ A ~ A ~ ~ ~ A ~ .  

Now 

(A2.37) 
j = l  

( z  - QoXQo)-'(z - Q O X Q O )  = 1. (A2.38) 

Multiplying (A2.38) from the left by A; we get 

A ~ ( z  -QoXQo)-'(z -Qo?tOo)=A;. (A2.39) 

Multiplying (A2.39) from the right by A,(i = 1,2, . . ., i - l ) ,  using (56), using 
QoAi = Aj  (from (7e)) twice, using X A j  = A,3€ (from (loa)) and A: = Ai (from (5a) ) ,  
we get 

j = 1 , 2  ,..., i-1. (A2.40) A;(z - QoXQo)-'Aj(z - A,3€Aj) = 0 

Multiplying (A2.40) from the right by ( z  - AjXAJ' gives 

A;(Z - Q ~ X Q ~ ) - ' A ~  = o j = 1 , 2 ,  ..., i-1. (A2.4 1) 

Multiplying (A2.39) on the right by A ,  using (5a) twice, using QoA; = A ;  (from 

(A2.42) 

Multiplying (A2.42) from the right by ( z  -AiXAi)-' and then by A ,  and using 

(A2.43) 

Multiplying (A2.39) on the right by Qi, using (7c), using QoQi = Q; (from (7h)) 

(A2.44) 

(7e)) twice, and also (loa),  we obtain 

Ai(z - QoXQO)-'A;(z -A;XA;) = A;. 

(5a) ,  we find that 

A;(z - QoXQo)-'A; = A;(z - A;XA;)-'A;. 

twice, using also ( lob)  and (7f), we get 

A;(z - QoXQo)-'Q;(z - QXQ;) = 0. 

Multiplying (A2.44) from the right by ( z  - QiXC?;)-' then gives 

A; (Z - Q&TQo)-' Qi = 0. (A2.45) 

Adding the equations (A2.45), (A2.43) and the equations (A2.41) for j =  

A;(z - QoXQO)-~QO=A;(Z  -A;XA;)-lA;. (A2.46) 

Substituting (A2.46) into (A2.37), using A;Qo = A; (from (7e)) and (5a) ,  we obtain 

1,2, . . ., i - 1, and on using (A2.36), we then get 
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This expression is analogous to (56) in Cresser and Dalton (1980). The derivation 
of the final equation, which is analogous to (12) in the last reference, follows the 
procedures outlined therein, with appropriate changes of notation. 

Thus we have 
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